Skip to main content

A new three-year study involving University of Tennessee-Oak Ridge National Laboratory Governor’s Chair for Environmental Biotechnology Terry Hazen will look at how aquatic microbial communities are impacted by biocides associated with hydraulic fracking.

“Fracking is something that has really changed the energy industry, but its environmental impacts are largely disputed,” Hazen said. “For example, biocides are used to help keep machinery and equipment protected against microbial corrosion, but that exposure can make the microbes resistant to the chemicals.”

Terry Hazen, head of the Institute for a Secure and Sustainable Environment and joint UT–Oak Ridge National Laboratory Governor’s Chair for Environmental Biotechnology.
Terry Hazen, head of the Institute for a Secure and Sustainable Environment and joint UT–Oak Ridge National Laboratory Governor’s Chair for Environmental Biotechnology.

Led by Gina Lamanendalla, Steve Techtmann, and Maria Campa, the project will look at how microbial communities are affected and consider the possibility of alternative biocides while ensuring that fracking can continue to be used to gain natural resources. Lamanendalla and Techtmann are former postdoctoral fellows of Hazen’s who are now faculty members at Juniata College and Michigan Technological University, respectively. Campa is a postdoctoral fellow with Hazen in the Methane Center in UT’s Institute for a Secure and Sustainable Environment.

Hazen’s team wants to clarify whether the use of biocides could lead to antibiotic-resistant strains of microbes, what the impact of the biocides is on the overall environment, and help pinpoint biocides that can continue to be used with greatest effect on equipment and the least impact on environment.

Students of UT-ORNL Governor’s Chair for Environmental Biotechnology Terry Hazen take water samples in Pennsylvania.
Students of UT-ORNL Governor’s Chair for Environmental Biotechnology Terry Hazen take water samples in Pennsylvania.

The study will specifically observe a set of streams in Pennsylvania that are near active hydro fracking sites. Those will be compared to streams not within active fracking areas.

Additionally, Hazen’s team hopes to look at what systems, biologically speaking, actively resist biocides and biocide-resistant strains.

“We’ll conduct our study over many years to help give us a better picture of what the long-term impact might be,” Hazen said. “This work could help develop future contamination-detection techniques.”

The project is backed by the National Science Foundation, with funding set to run through summer 2021.

CONTACT:

David Goddard (865-974-0683, david.goddard@utk.edu)